中文題目:長期暴露懸浮顆粒和 eGFR 的退化: preESRD 的世代研究

英文題目: Long-term exposure to fine particulate matter and progression to eGFR Deterioration: A Cohort Study in patients with pre-ESRD

作 者: 鍾牧圻¹ 吳治達² 鍾季容³ 吳明儒¹

服務單位:¹臺中榮民總醫院內科部腎臟內科,²國立成功大學測量及空間資訊學系,³中國醫藥 大學公共衛生學院公共衛生學系

Background: Limited literature explored the effect of air pollutants on chronic kidney disease (CKD) progression, especially for patients with pre-ESRD. In this study, we reported the linear and nonlinear relationships of PM_{2.5} and NO₂ to eGFR deterioration after adjusting for smoking status and other traditional clinical factors.

Method: This study adopted a retrospective cohort of patients with stage 3B to stage 5 CKD (N=11,099) from Taichung Veterans General Hospital during August 2004 to December 2020. eGFR deterioration was defined as a decline in eGFR > 6 ml/min/1.73m²/year for diabetic patients or > 4 ml/min/1.73m²/year for patients without diabetes. Hybrid kriging/LUR models were used to estimate individual levels of PM_{2.5} and NO₂. The relationship of air pollutants and eGFR deterioration was evaluated using Cox proportional hazard models.

Results: After adjusting for smoking status, baseline eGFR stages, and other traditional clinical factors, the risk of eGFR deterioration increased with increasing $IPM_{2.5}$ and NO_2 level (p= 0.0005 for PM_{2.5} and p= 0.0214 for NO₂), especially for those exposed to PM_{2.5} $\ge 32.82 \ \mu g/m^3$ or NO₂ \ge 16.44 ppb. Similar results were also found in the two-pollutant models. The non-linear patterns on eGFR deterioration had threshold concentrations of 31.38 $\mu g/m^3$ for PM_{2.5} and 15.44 ppb for NO₂, but NO₂ became nonsignificant at above 25 ppb. After adjusting for smoking status, baseline eGFR stages, and other traditional clinical factors, the risk of eGFR deterioration increased with increasing $IPM_{2.5}$ and NO_2 level (p= 0.0005 for PM_{2.5} and p= 0.0214 for NO₂), especially for those exposed to PM_{2.5} $\ge 32.82 \ \mu g/m^3$ or NO₂ $\ge 16.44 \text{ ppb}$. Similar results were also found in the two-pollutant models. The non-linear patterns on eGFR deterioration increased with increasing $IPM_{2.5}$ and NO_2 level (p= 0.0005 for PM_{2.5} and p= 0.0214 for NO₂), especially for those exposed to PM_{2.5} $\ge 32.82 \ \mu g/m^3$ or NO₂ $\ge 16.44 \text{ ppb}$. Similar results were also found in the two-pollutant models. The non-linear patterns on eGFR deterioration had threshold concentrations of 31.38 $\mu g/m^3$ for PM_{2.5} and 15.44 ppb for NO₂, but NO₂ became nonsignificant at above 25 ppb. *Conclusions:* Linear and 15.44 ppb for NO₂, but NO₂ became nonsignificant at above 25 ppb. *Conclusions:* Linear and non-linear associations were observed between the levels of PM_{2.5} and NO₂ and the incidence risk of eGFR deterioration.