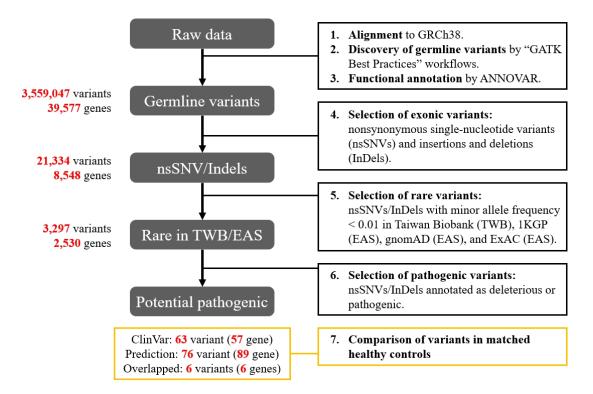
中文題目:心肌橋之基因定序研究

英文題目: Gene Sequencing Study of Myocardial Bridge

作 者:楊宗霖^{1,2},劉如濟^{1,3},張建國⁴,牛道明⁵,丁致勻⁶,林旻柔⁶, 張偉嶠⁶,施俊明^{1,2}

服務單位:¹臺北醫學大學臨床醫學研究所,²臺北醫學大學附設醫院內科部心 臟科,³衛生福利部雙和醫院內科部心臟科,⁴中國醫藥大學附設醫院精準醫學 中心,⁵臺北榮民總醫院兒童醫學部,⁶臺北醫學大學藥學院

Background: Myocardial bridge (MB) is a common coronary artery anomaly and an important cause of chest pain. The clinical presentation of MB mimics that of true obstructing coronary artery disease (CAD). Cardiologists could not distinguish between MB and CAD without invasively diagnostic modalities. In the ear of next-generation sequencing and precision medicine, the genetic basis of this vasculopathy is still lacking. We aimed to investigate the possible underlying gene variants associated with MB and hopefully develop an easier method for diagnosis.


Method: Whole-exome sequencing technique was exploited to collect genetic information from MB subjects and normal controls. Genotypic differences were analyzed with CLC. Functional annotations were investigated via GO, KEGG, GTEx Portal and knockout mouse databases. Pathogenicity prediction were performed by the ClinVar, CADD, REVEL scoring systems. Amino acid and protein changes were predicted with MutPred2 and the ELM databases.

Results: Eight pairs of angiographically-identified MB subjects and normal controls were enrolled for analysis. One hundred and thirty-three candidate variants were identified, functional annotation of which indicated significant association with abnormal skeletal muscle mass, cardiomyopathy, and transmembrane cation proteins. After filtering through ClinVar, CADD and REVEL databases and excluding variants in normal subjects, four non-synonymous single nucleotide variants in four genes were identified potentially pathogenic for myocardial bridge (rs773695263 A>G in SCN1A, rs201137087 C>T in PCDH15, rs397514715 T>C in SMAD9 and rs186669379 C>T in SGCA), all of which resulted in amino acid substitutions statistically significant for myocardial bridge pathogenicity. Among the genes potentially associated with myocardial bridge, the SGCA gene has the highest expression titer and putatively plays the most important role in the development of MB.

Conclusion: Myocardial bridge is associated with genetic variants. Among the

potentially pathogenic variants associated with MB, the SGCA gene variant has the highest probability for causality off MB. Further studies would be needed to clarify the underlying mechanisms of gene SGCA in the formation of myocardial bridge.

Figure 1. The Study Flow Chart of Genetic Study of Myocardial Bridge

Functional Annotations	No. of Reference Genes in the Category	No. of MB candidate genes in the category	p Valve	FDR
Knockout Mouse Phenotypes				
decreased skeletal muscle mass	107	9	7.01 x 10 ⁻⁷	4.27 x 10 ⁻³
impaired skeletal muscle contractility	38	6	1.33 x 10 ⁻⁶	
abnormal skeletal muscle mass	121	9	1.98 x 10 ⁻⁶	
KEGG pathway				
arrhythmogenic right ventricular cardiomyopathy	72	7	4.68 x 10 ⁻⁶	$1.53 \ge 10^{-3}$
GO term categories				
inorganic cation transmembrane transport	722	21	1.79 x 10 ⁻⁷	1.23 x 10 ⁻³
cation transmembrane transport	810	22	2.87 x 10 ⁻⁷	
muscle contraction	339	14	4.14 x 10 ⁻⁷	

Table 1. Functional Annotation of Myocardial Bridge Gene Set

Table 2. Potentially Pathogenic Variants for Myocardial Bridge

Chr.		Ref.	Alt.	Gene	Type	avSNP150	Allelic Frequency			Pathogenicity				
	Position						1KGP	gnomAD ExAC	ExAC	TWB	ClinVar	CADD	REVEL	Subj. No. (MB)
							(EAS)	(EAS)	(EAS)					
2	166041286	А	G	SCN1A	nsSNV	rs773695263	-	-	0	-	Conflicting interpretations of pathogenicity	25.9	0.884	5
10	53857257	С	Т	PCDH15	nsSNV	rs201137087	-	0.0074	0.0054	0.0065	Conflicting interpretations of pathogenicity	34	0.818	4
10	86717984	т	G	LDB3	nsSNV	rs566463138	0.001	0.0026	0.0016	0.0035	Conflicting interpretations of pathogenicity	26.6	0.78	7
13	36879563	Т	С	SMAD9	nsSNV	rs397514715	-	0.0013	0.0015	0.0005	Pathogenic	24.8	0.902	6
13	51949723	G	A	ATP7B	nsSNV	rs750019452	-	0.0003	0.0023	0.002	Pathogenic/Likely pathogenic	34	0.842	5
17	50167954	с	Т	SGCA	nsSNV	rs186669379	0.006	0.0045	0.0036	0.006	Conflicting interpretations of pathogenicity	23.5	0.864	3

*Variants shown in bold were also identified in healthy controls.

Figure 2. The Tissue Expressions of the Potential Gene Variant for Myocardial Bridge

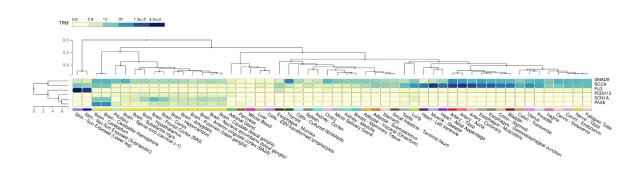
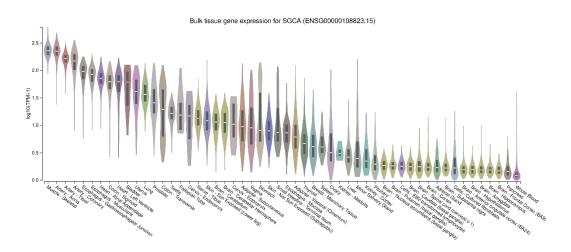



Figure 3. The Expression of the Gene SGCA among Human Tissues

Gene	Substitution	MutPred2 score	Affected ELM motifs	Affected PROSITE	Molecular mechanism with most significance	Probability of pathogenicity	p Value
SGCA	A107V	0.669	ELME000147	Plk phosphorylation site	Altered transmembrane protein	0.34	4.9x10 ⁻⁵
PCDH15	V1242M	0.710	ELME000193	Nucleus Export Signal	Altered transmembrane protein	0.31	1.1x10 ⁻⁴
SCN1A	M787T	0.880	none	-	Gain of allosteric site at F784	0.26	8.3x10 ⁻³
SMAD9	K43E	0.785	ELME000064 ELME000146 ELME000271 ELME000278 PS 00006	CK2 phosphorylation site PCSK cleavage site Nuclear Localization signal Nuclear Localization signal Casein kinase II phosphorylation site	Altered disordered interface	0.28	0.02

Table 3. Protein Structure Prediction of Pathogenic Variants for Myocardial Bridge