中文題目:血液透析病患N端腦鈉肽前體(NT-pro-BNP)與心衰竭及預後的關係 英文題目:The Relationships between NT-pro-BNP and Heart Failure or Prognosis in End-stage-renal-disease Patients with Maintenance Hemodialysis 作者:蔣恆斌<sup>1,2,3</sup>,謝欽好<sup>2</sup>,呂姿潔<sup>4</sup>,林政毅<sup>2</sup>,林美婷<sup>2</sup>,張淑芬<sup>2</sup>, 程曉晶<sup>5</sup>,洪啟智<sup>6\*</sup> 服務單位:<sup>1</sup>健仁醫院腎臟內科,<sup>2</sup>健仁醫院檢驗科,<sup>3</sup>義守大學醫務管理學系, <sup>4</sup>健仁醫院護理部,<sup>5</sup>健仁醫院心臟內科,<sup>6</sup>高雄醫學大學附設中和醫院腎臟內科 \*通訊作者

Background: N-terminal pro-brain natriuretic peptide (NT-pro-BNP) is one

biomarker related to heart failure. Its range in the patients with maintenance hemodialysis is less studied. Is the diagnostic ability of NT-pro-BNP the same as or better than BNP or the parameters of cardiac echo for heart failure in the End-stagerenal-disease (ESRD) patients with maintenance hemodialysis? Whether NT-pro-BNP is related to the hard outcomes in ESRD patients with maintenance hemodialysis is unclear. Thus, we investigated the association of NT-pro-BNP, BNP, and other factors for the diagnosis of heart failure and the relationships between NT-pro-BNP and the prognosis of the ESRD patients with maintenance hemodialysis in this study. Method: We did a retrospective cohort study since March 1<sup>st</sup>, 2021. 68 ESRD patients, who were all  $\geq 18$  year-old with maintenance hemodialysis in our hospital, were followed until Aug 15<sup>th</sup>, 2022. Three patients were excluded because the followup period was less than 3 months. We averaged all laboratory data within the first 3 months of each patient and used the averaged values for the analyses. The primary composite end-points include cardiovascular death, stroke, myocardial infarction, and

hospitalization for unstable angina and heart failure (5-point major acute cardiovascular events, 5P-MACE) and all-cause mortality. Heart failure in this study was defined as New York Heart Association Functional Classification III or IV. **Results:** The 65 ESRD patients with maintenance hemodialysis were  $67.2\pm12.2$  years old. 35 patients (53.8%) were man. 50 patients (76.9%) had diabetes and 64 patients (98.5%) had hypertension. 16 patients (24.6%) took beta-blockers. 14 patients (21.5%) had 5P-MACE and 13 patients (20%) died during the follow-up period. NTpro-BNPs were 5550 (2602-13845) and BNPs were 331 (158-865) in this study, shown in Table 1. Multivariate linear regression showed NT-pro-BNP was significantly related to pre-dialysis SBP, white blood cell count, ferritin, residual urine, triglyceride, ejection fraction, and parathyroid hormone. The r-squared of this multivariate lineal model was 0.674. The beta-coefficients were +0.44, +0.31, +0.22, -0.42, -0.38, -0.35, and -0.16. The ROC curve (Figure 1) showed the area under curve (AUC) of NT-pro-BNP and BNP for heart failure were 0.799 (P value < 0.001) and 0.799 (*P value* < 0.001). The best diagnostic cut-off were 15275 and 803 respectively. The AUC of ejection fraction (EF) of left ventricle for heart failure was 0.672 (P value = 0.024). Cox-regression showed hazard ratio (HR) (95% confidence internal) of 5P-MACE is 1.395 (1.065-1.825) per 1000 pg/ml increase of NT-pro-BNP in fullyadjusted model. The HR of the composite 5P-MACE and all-cause mortality is 1.186

(1.048-1.341) per 1000 pg/ml increase of NT-pro-BNP in these ESRD patients. (Table2)

**Conclusion:** In ESRD patients with maintenance hemodialysis, we found the diagnostic ability of NT-pro-BNP for heart failure is as good as BNP and the best diagnostic cut-off were 15275 and 803. Pre-dialysis SBP and residual urine are two of the important factors to affect NT-pro-BNP. NT-pro-BNP, BNP, and EF all have significant diagnostic ability for heart failure. The HR of 5P-MACE significantly increased 39.5% and the HR of composite 5P-MACE and all-cause mortality significantly increased 18.6% when NT-pro-BNP increased 1000 pg/ml in these ESRD patients. Therefore, if the cardiac echo cannot be done regularly or in time in the certain region or country for these ESRD patients with maintenance hemodialysis, NT-pro-BNP can give a good guidance for the physicians to care these patients. More researches are warranted to evaluate if we lower NT-pro-BNP can improve the prognosis of these patients.

| No. of patients                 | 65                  |                    |  |  |
|---------------------------------|---------------------|--------------------|--|--|
| Demographics data               |                     |                    |  |  |
| Age (year)                      | 67.2±12.2           |                    |  |  |
| Male, n (%)                     | 35 (53.8)           |                    |  |  |
| BMI (kg/m <sup>2</sup> )        | 24.8±4.4            |                    |  |  |
| Diabetes, n (%)                 | 50 (76.9)           |                    |  |  |
| HTN, n (%)                      | 64 (98.5)           |                    |  |  |
| CAD, n (%)                      | 22 (33.8)           |                    |  |  |
| Stroke, n (%)                   | 18 (27.7)           |                    |  |  |
| PAOD, n (%)                     | 17 (26.2)           |                    |  |  |
| Hemodialysis related parameters |                     |                    |  |  |
| HD months                       | 33.0 (12.0-69.5)    |                    |  |  |
| Darbepoetin equivalent (unit)   | 100.0 (60.0-100.0)  | 100.0 (60.0-100.0) |  |  |
| Residual urine (ml)             | 100 (0-300)         |                    |  |  |
| URR (%)                         | 72.8±4.4            |                    |  |  |
| Pre-dialysis SBP (mmHg)         | 149.8±20.8          |                    |  |  |
| Pre-dialysis DBP (mmHg)         | 71.0±14.7           |                    |  |  |
| Laboratory data                 |                     |                    |  |  |
| WBC (/ul)                       | 6980 (5443-8598)    |                    |  |  |
| Hemoglobin (g/dl)               | 10.1±1.2            |                    |  |  |
| Sodium (mmol/l)                 | 135.2±3.3           |                    |  |  |
| Potassium (mmol/l)              | 4.5±0.7             |                    |  |  |
| Glucose (mg/dl)                 | 159 (125-193)       |                    |  |  |
| Phosphorus (mg/dl)              | 5.0±1.4             |                    |  |  |
| Uric acid (mg/dl)               | 6.3±1.7             |                    |  |  |
| GPT (mg/dl)                     | 13.0±8.8            |                    |  |  |
| Cholesterol (mg/dl)             | 157.0±39.6          |                    |  |  |
| Triglyceride (mg/dl)            | 135.0 (99.5-184.0)  |                    |  |  |
| TIBC (ug/dl)                    | 241.8±57.0          |                    |  |  |
| Ferritin (ng/ml)                | 337.1 (159.8-488.0) |                    |  |  |
| NT-pro-BNP                      | 5550 (2602-13845)   |                    |  |  |
| BNP                             | 331 (158-865)       |                    |  |  |
| iPTH                            | 218 (107-398)       |                    |  |  |
| Cardiothoracic ratio (%)        | 50.4±5.2            |                    |  |  |
| Medications                     |                     |                    |  |  |
| Beta-blockers (%)               | 16 (24.6)           |                    |  |  |
| ACEI/ARBs (%)                   | 22 (33.8)           |                    |  |  |
| Oral hypoglycemic agents (%)    | 27 (41.5)           |                    |  |  |

Table 1a. Baseline Characteristics of the Patients

| Insulin (%)      | 15 (23.1) |
|------------------|-----------|
| Antiplatelet (%) | 21 (32.3) |

Abbreviations: ACEI, Angiotensin converting enzyme inhibitor; ARB, Angiotensin receptor blocker; BMI, body mass index; BNP, brain natriuretic peptide; CAD, coronary artery disease; DBP, diastolic blood pressure; HTN, hypertension; NT-pro-BNP, N terminal pro-brain natriuretic peptide; PAOD, peripheral artery occlusion disease; SBP, systolic blood pressure; TIBC, total iron binding capacity; URR, urea reduction rate

## Table 1b. Baseline Electrocardiography and Echocardiography of the Patients

| No. of patients                   | 65               |  |  |
|-----------------------------------|------------------|--|--|
| 12-lead ECG results               |                  |  |  |
| Af/AF, n (%)                      | 3 (4.6)          |  |  |
| Myocardial ischemia, n (%)        | 13 (20.0)        |  |  |
| Echocardiography parameters       |                  |  |  |
| LAD (mm)                          | 39.0 (35.0-44.5) |  |  |
| EF (%)                            | 65.0 (61.0-68.0) |  |  |
| FS (%)                            | 36.0 (33.5-38.0) |  |  |
| LV mass index (g/m <sup>2</sup> ) | $157.7{\pm}45.0$ |  |  |

Abbreviations: Af, atrial fibrillation; AF, atrial flutter; ECG, electrocardiography; EF, ejection fraction;

FS, fraction shortening; LAD, left atrium diameter; LV, left ventricle

## Table 2. Cox Regression for 5P-MACE and the Composite of 5P-MACE and Allcause Mortality by NT-pro-BNP per 1000 pg/ml.<sup>a</sup>

|                               | 5P-MACE                                      |                     |                     |                     |  |
|-------------------------------|----------------------------------------------|---------------------|---------------------|---------------------|--|
|                               | Unadjusted HR                                | Model 1             | Model 2             | Fully-adjusted HR   |  |
|                               | (95%CI)                                      | (95%CI)             | (95%CI)             | (95%CI)             |  |
| per 1000 NT-pro-BNP,<br>pg/ml | 1.049 (1.008-1.093)                          | 1.059 (1.013-1.106) | 1.068 (1.017-1.121) | 1.395 (1.065-1.825) |  |
|                               | Composite of 5P-MACE and All-cause Mortality |                     |                     |                     |  |
|                               | Unadjusted HR                                | Model 1             | Model 2             | Fully-Adjusted HR   |  |
|                               | (95%CI)                                      | (95%CI)             | (95%CI)             | (95%CI)             |  |
| per 1000 NT-pro-BNP,<br>pg/ml | 1.050 (1.016-1.085)                          | 1.060 (1.023-1.098) | 1.078 (1.035-1.124) | 1.186 (1.048-1.341) |  |

Abbreviations: 5P-MACE, 5-point major adverse cardiovascular events; CI, confidence interval; HR, hazard ratio

a Models 1 is adjusted for age and gender. Model 2 is adjusted for age, gender, diabetes, hypertension, coronary artery disease, stroke, peripheral arterial occlusion disease and heart failure. Fully-adjusted model included variables from model 2 and white blood cell count, Hemoglobin, albumin, potassium, phosphorus, cholesterol, triglyceride, total iron binding capacity, parathyroid hormone, pre-dialysis systolic blood pressure, and residual daily urine amount.



**Figure 1.** Receiver operating characteristic (ROC) curve for predicting heart failure. a) area under curve (AUC) of averaged NT-pro-BNP is 0.799 (*P value* < 0.001); AUC of BNP is 0.799 (*P value* < 0.001); AUC of CTR is 0.603 (*P value* = 0.193)AUC of left atrium diameter (LAD) is 0.568 (*P value* = 0.390); AUC of LV mass index = 0.615 (*P value* = 0.143); b) AUC of EF is 0.672 (*P value* = 0.024).