Effect of Pravastatin on Sympathetic Reinnervation in Post-infarcted Rats

Authors: 李聰明a, 張念中b.

Affiliations: aCardiology Section, Department of Medicine, Chi-Mei Medical Center, Tainan, Taiwan
bCardiology Section, Department of Medicine, Taipei Medical University and Hospital, Taipei, Taiwan.

Introduction: Epidemiological studies showed that men treated with statins appear to have a lower incidence of sudden death than men without statins. However, the specific factor for this remained disappointingly elusive. We assessed whether pravastatin attenuates cardiac sympathetic reinnervation after myocardial infarction through activation of ATP-sensitive potassium (K\textsubscript{ATP}) channels.

Materials and Methods: Twenty-four hours after ligation of the anterior descending artery, male Wistar rats were randomized to either vehicle, nicorandil (a specific mitochondrial K\textsubscript{ATP} channel agonist), pinacidil (a nonspecific K\textsubscript{ATP} channel agonist), pravastatin, glibenclamide (a K\textsubscript{ATP} channel blocker), or a combination of nicorandil and glibenclamide, pinacidil and glibenclamide or pravastatin and glibenclamide for 4 weeks.

Results: Myocardial norepinephrine levels revealed a significant elevation in vehicle-treated rats at the remote zone compared with sham-operated rats (2.54 ± 0.17 vs. 1.26 ± 0.36 µg/g protein, \(P < 0.0001\)), consistent with excessive sympathetic reinnervation after infarction. Immunohistochemical analysis for tyrosine hydroxylase, growth associated factor 43 and neurofilament also confirmed the change of myocardial norepinephrine. This was paralleled by a significant upregulation of tyrosine hydroxylase protein expression and mRNA in the vehicle-treated rats, which reduced after administering either nicorandil, pinacidil or pravastatin. Arrhythmic scores during programmed stimulation in the vehicle-treated rats were significantly higher than those treated with pravastatin. In contrast, the beneficial effects of pravastatin-induced were reversed by the addition of glibenclamide, implicating K\textsubscript{ATP} channels as the relevant target.

Conclusion: The sympathetic reinnervation after infarction is modulated by activation of K\textsubscript{ATP} channels. Chronic use of pravastatin after infarction, resulting in attenuated sympathetic reinnervation by activation of K\textsubscript{ATP} channels, may modify the arrhythmogenic response to programmed electrical stimulation.