急性冠心症治療的最新進展

林鴻儒 陳明豐

國立台灣大學醫學院附設醫院 内科

摘 要

急性冠心症(acute coronary syndrome)的治療,可分成ST上升型心肌梗塞和非ST上升型 急性冠心症。關於ST上升型心肌梗塞的治療,ASSENT4PCI 試驗本是希望能證實利用到院 前注射全劑量血栓溶解劑的促進性經皮冠血管治療方式,來有效縮短心肌缺血的時間,結 果卻反而增加併發症。在直接經皮冠血管治療過程中,經常性使用遠端保護及血栓摘除裝 置,從臨床試驗結果看來,這些裝置不只沒有明顯臨床上的益處,而且安全性也是令人擔 心。至於非ST上升型急性冠心症的治療,主要在於早期侵入性治療策略和選擇性侵入性治 療策略上的探討。雖然在追蹤1年的ICTUS 試驗發現這兩種治療處理方式並統計上無差 異,不過有證據暗示,可能等到ICTUS 長期的追蹤報告公佈才會有較明朗的結論。而對於 抗血小板藥物和抗血栓凝結劑治療上,也有不同於以往的發現。幹細胞治療是醫學近來最 受矚目的焦點,但以目前的臨床試驗的長期追蹤結果,卻無明顯增進左心室射出功率;至 於有關是否能夠降低臨床併發症,目前並無一致的結論。幹細胞治療的重大突破,可能需 要針對治療的機制作進一步了解。而治療的終極目標應該是從預防醫學的角度,利用目前 基因體醫學的知識及技術,找出高危險群患者加以治療,以降低發生急性冠心症的機率。

關鍵詞:急性冠心症 (Acute coronary syndrome) 促進性經皮冠血管治療 (Facilitated percutaneous coronary intervention) 抗血小板治療 (Antiplatelet therapy) 抗血栓凝結治療 (Anticoagulant therapy) 幹細胞治療 (Stem cell-based therapy)

基因體醫學 (Genomic medicine)

前言

隨著醫療和公共衛生的進步,許多傳染性疾 病受到控制,人類的壽命也逐漸增長。加上因現 代生活型態及飲食習慣的改變,其他許多疾病也 因應而生,其中又以因粥狀動脈硬化產生的缺血 性冠心症增加的幅度最為驚人,也一直高佔死亡 率的前幾位。根據2002年世界衛生組織統計資 料,全世界57,029,155的死亡人數中,除了傳染 性疾病外,心血管疾病(包含腦血管疾病)死亡 率高佔第一位,共有16,733,160人,佔全部死亡 人數的29.3%。其中,又以缺血性冠心症位居第 一位,佔其中43.1%。以國內情況而言,衛生署 民國94年死亡率的統計,全國心血管疾病死亡 率(不包含腦血管疾病及高血壓)共有12,970 人,佔全部死亡率9.3%,位居死亡率第三位。 所以冠心病的防治,在近十幾年來一直是各國醫 療及公共衛生的重點。

由於上個世紀晚期大量的人力及物力投入研究,冠心症的致病機轉已有相當的了解,使得藥物及介入性治療獲得大幅進步,所以不論是急性或慢性冠心症,預後都有大幅改善。根據美國心臟學院及美國心臟協會針對急性冠心症的治療處置,以病患表現初期的心電圖是否有ST段上升,分成兩大類:ST上升型心肌梗塞(STelevation myocardial infarction)(包括左心室後壁梗塞),及非ST上升型冠心症(non ST elevation acute coronary syndrome)。以下就以此討論近來發表有關急性冠心症治療的臨床試驗之最新進展。

ST上升型心肌梗塞

急性冠心症的治療分成兩大部分:短期的治療目標主要放在避免或是減少心肌壞死的範圍; 而長期的目標是降低左心室再塑和心衰竭的發生 率,以期促進存活率。

因ST上升型心肌梗塞及非ST段上升型急性 冠心症的病生理機轉並不完全相同,所以根據目 前美國心臟學院及美國心臟協會建議的處置指 引,初期的治療處置並不完全相同。ST段上升 型急性心肌梗塞是因爲易脆性粥狀硬化斑塊產生 破裂或破損而產生急性阻塞性血栓,而造成心肌 壞死。所以最重要所給予的急性治療即是迅速進 行有效且穩定的血管再通暢性治療(revascularization),以減少心肌壞死的範圍,而降低梗塞 後心衰竭的機率。根據目前的處置指引,血管再 通暢性治療可選擇直接經皮冠心血管治療、藥物 血栓溶解治療、或是冠狀動脈繞道手術。

 一、促進性經皮冠血管治療(facilitated percutaneous coronary intervention)

減少心肌壞死的其中一項關鍵在於縮短急性 症狀發作到給予血管再通暢治療的時間間距。而 且時間間距的縮短亦會降低死亡率。但現實中, 心肌梗塞發作後,病患常超過兩小時後才會被運 送到達醫院。依據整合分析(meta-analysis)發現 在ST上升型心肌梗塞急性發作後1到12小時內 給予藥物血栓溶解治療,存活率和接受治療的時 間間隔呈正相關'。而且比較直接經皮冠心血管 治療及藥物血栓溶解治療效果,已證實前者可以 有效降低ST上升型心肌梗塞後續的併發症^{2.3}。

但若 ST 上升型心肌梗塞患者要接受直接經 皮冠心血管治療,現今實際執行上,從急性症狀 發作到給予治療的時間間距會比給予藥物血栓溶 解治療所需要的來得長。根據美國 1999 到 2002 年的統計資料,高達 60% 的患者,其接受直接 經皮冠血管治療,超過 90 分鐘的建議時間⁴。另 一方面,已有證據顯示急性心肌梗塞接受直接經 皮冠心血管治療時,若產生心肌梗塞相關冠狀動 脈(infarct-related artery, IRA)已有血流恢復 者,一年存活率比較好⁵。

因此,為了縮短急性症狀發作到給予血管再 通暢治療的時間間距,又要保留接經皮冠心血管 治療的優勢,除了病人的自身警覺性的宣導和運 送過程的改善外,再利用藥物血栓溶解治療的方 便性,結合於到院前在救護車上或急診室中進行 藥物血栓溶解治療以期達成部分或全部血栓溶解 而縮短心肌缺血時間,到院後再進行經皮冠血管 治療,此過程稱爲促進性經皮冠血管治療,成爲 近來臨床試驗的重點之一。

初期臨床研究指出ST上升型心肌梗塞病患 接受到院前半劑量血栓溶解劑的促進性經皮冠血 管治療策略,比只接受直接經皮冠血管治療,心 電圖上ST段上升的恢復來得好⁶。但最近AS-SENT-4臨床試驗中獲得的結論卻令人失望。在 ST上升型心肌梗塞患者症狀發作6個小時內, 全部接受到院後經皮冠血管治療。實驗組--即進 行促進性經皮冠血管治療--加上接受到院前全劑 量血栓溶解劑tenecteplase(TNK),但卻發現促 進性經皮冠血管治療反而使90天內的併發症增 加⁷。而且,最近的統合分析(包括ASSENT-4P-CI)也指出,雖然促進性經皮冠血管治療有較高 比例的患者在進行經皮冠血管治療前有較佳梗塞 相關冠狀動脈的灌流,但其死亡率、非致命性的 心肌再梗塞機率、及出血併發症卻相對較高。。

但另一方面,促進性經皮冠血管治療卻證實 比只接受藥物血栓溶解治療結果較佳。 CAPI-TAL-AMI試驗中,研究高危險 ST 上升型心肌梗 塞病患接受促進性經皮冠血管治療或只接受藥物 血栓溶解治療。發現前者可顯著降低6個月內併 發症,而嚴重出血的機率卻不會增加°。

所以,以目前的臨床試驗結果而言,不建 議在欲接受直接經皮冠血管治療的ST上升型心 肌梗塞病患,給予到院前全劑量血栓溶解劑的治 療;而至於到院前半劑量血栓溶解劑的治療,則 需進一步的臨床試驗證據。對於那些ST上升型 心肌梗塞病患是接受藥物血栓溶解治療後,立即 進行經皮冠血管治療,在臨床上愼選為高危險群 的病患而言,是有所助益的。

在台灣,因法律層面尚未周詳,目前並無法 讓第一線的緊急醫療救護人員在到院前(即在病 發現場或救護車上)給予血栓溶解劑。

二、遠端保護及血栓摘除裝置

在 ST 上升型心肌梗塞病患接受直接經皮冠 血管治療時,若產生遠端血栓栓塞(distal embolization),已經有研究證實會有較高的5年死

Trial Intervention Setting Primary end-point Results **REMIEDIA**¹⁵ 100 pt. with anterior manual aspiration with Post-PCI TIMI myocar-Manual aspiration had AMI, <12 h, receiving Diver catheter before dial perfusion grade increased the percentage $(TMPG) \ge 2$ and ≥ 2 of post-PCI TMPG >=2 primary PCI primary PCI with stent-70% ST elevation resoand STR ing lution (STR) XAMINE-ST¹⁶ 201 pt. with AMI, <12 h, Primary PCI with stent-STR 1 hr after PCI Use of X-Sizer had inbaseline TIMI flow grade ing + thrombectomy creased complete STR with X-Sizer device 0 or 1 and lowered the incidence of distal embolization EMERALD¹⁷ 501 pt. with AMI, <6 h PPCI + distal embolic Infarct size by single No difference in primaprotection with photon emission comry end-point GuardWire device puted tomography (SPECT) 5-14 days later. STR 30 min after PCI **PROMISE**¹⁸ Primary PCI + distal 200 pt. with STEMI or Maximal adenosine-in-No difference in primaembolic protection with duced Doppler flow ve-NSTEMI, <48 h ry end-point FilterWire locity after PPCI DEAR-MI¹⁹ 148 pt. with STEMI,12 h Primary PCI + throm-STR (>=70%) and my-The group of thrombus bus aspiration ocardial brush grade aspiration had better re-(MBG) 3 sults of STR and MBG 3 Ali et al.10 Primary PCI + rheolytic Infarct size by SPECT 480 pt. with STEMI, 12 h Large infarct size and thrombectomy 14-28 days after PCI even worse in TIMI flow grade and 30-day major adverse cardiac events (MACE) in the thrombectomy group Kaltoft et al.¹² 215 pt. with STEMI, 12 h Primary PCI + Myocardial salvage at Final infarct size, not thrombectomy with 30 days by SPECT myocardial salvage, was Rescue catheter increased in the thrombectomy group

表一:關於遠端栓塞保護及血栓摘除裝置之臨床試驗

亡率¹⁰。例行性使用血管遠端保護或血栓摘除裝置,是目前臨床上用以來希望降低遠端血栓栓塞 機率和改善預後的方法之一。但根據目前的臨床 研究結果並無顯著的益處。如表一,雖然有些研 究顯示出可以促進心電圖上ST段上升的回復及 心肌再灌流;但在最近兩個臨床試驗中,例行性 使用這些裝置,反而增加心肌梗塞面積及30天 內的心血管併發症^{11,12}。

不過,在最近一篇由 Giuseppe De Luca等發 表的整合分析研究,收集從 1990 年到 2006 年在 期刊發表和學會發表的報告共 21 個臨床試驗, 用以檢驗急性心肌梗塞患者使用血管遠端保護或 血栓摘除裝置的臨床效益。結果發現使用血管遠 端保護或血栓摘除裝置並不會降低 30 天的死亡 率,但可以降低經皮冠血管治療後遠端血栓發生 率,和較佳的冠狀動脈血流流速(TIMI grade 3) 和心肌灌流程度(myocardial blush grade 3)¹³。在 Kunadian B.等的統合分析研究,也得到無法降低 30 天死亡率或再心肌梗塞的機率¹⁴。

不過因為統合分析研究有其先天的限制,例 如:選擇試驗病患的標準不一、無法取得試驗原 始資料、試驗結果分析標準差異等,所以在尙未 有明確的臨床試驗結果,證實對於哪些特定情形 下的急性心肌梗塞病患有明確的益處之前,目前 是不建議例行性使用血管遠端保護或血栓摘除裝 置。

三、裸露金屬支架和塗藥支架

針對ST上升型心肌梗塞病患,最近有兩個 臨床隨機試驗比較塗藥支架和裸露金屬支架(即 "非塗藥支架")的治療效果。PASSION試驗是 比較paclitaxel塗藥支架和裸露金屬支架,發現 前者並無明顯降低1年內的併發症²⁰。但在TY-PHOON試驗中,接受sirolimus塗藥支架的病 患,1年內的併發症卻有明顯降低²¹;其中主要 是因爲前者有較低的血管再治療的機率。此外, 不論是paclitaxel或sirolimus塗藥支架並無發現 會增加支架血栓機率。所以根據此兩個臨床試驗 結論,可得知塗藥支架在治療ST上升型心肌梗 塞病患,並不會增加併發症或危險性;不過要注 意的是,因爲這兩個試驗接受塗藥支架的人數不 算多,因此還要有更大型的臨床試驗才能證實晩 期支架血栓(late stent thrombosis)的發生率。另 一個要指出的是,相對於裸露金屬支架,這兩種 塗藥支架皆無降低1年的死亡率或心肌再梗塞機 率。

不過,目前美國食物藥品管理局所根據用以 通過塗藥支架的適應症的臨床試驗中,目前並不 包含48小時內發生心肌梗塞的病患。至於paclitaxel 或sirolimus塗藥支架何者為優,則需要更 多臨床試驗證據才能得知。

非ST上升型急性冠心症

早期侵入性治療策略(early invasive strategy) vs.選擇性侵入性治療策略(selective invasive strategy)

非ST上升型急性冠心症包括不穩定型心絞 痛(unstable angina)及非ST上升型心肌梗塞(non ST elevation myocardial infraction)。和ST上升型 急性心肌梗塞不同的是,急性血栓主要由血小板 形成的白色血栓,進而產生心肌缺血及心肌壞 死。所以初期的治療以抗血小板及抗凝血的藥物 治療爲主。但若病患在適當的藥物治療下仍有持 續性心肌缺氧,心衰竭,或心室頻脈等症狀,目 前之共識爲建議儘早進行經皮冠心血管治療-此 治療策略即爲選擇性侵入性治療策略比選擇性 侵入性治療策略更可嘉惠於非ST上升型急性冠 心症患者。但近來發表的ICTUS 試驗結論卻不 是如此。在追蹤1年的報告中,發現兩種治療策

但另一方面,最近兩篇統合分析發表2年及 2年以上的結論似乎有不同之結果;發現採取早 期侵入性治療策略可顯著降低2至5年內的死亡 率和心肌梗塞^{24.25}。所以,可能要等到ICTUS試 驗發表兩年以上的追蹤結果,才會有較明確的結 論。

抗血小板藥物

目前在臨床治療上,可發現抗血小板治療阻抗性,在阿斯匹靈大約為5.5到60%²⁶,而 clopidogrel約有24%²⁷。因為發現抗血小板治療阻抗 性和急性冠心症的臨床併發症成正相關²⁸,所以 近來臨床試驗對於抗血小板藥物是否合併使用、 clopidogrel的負荷劑量(loading dose)及給予的 時間點有進一步的探討。

關於阿斯匹靈和 clopidogrel 的合併 使用

目前在於使用支架的病患身上,合併使用阿 斯匹靈及 clopidogrel,除非有禁忌症,已經屬於 常態性使用。若是在使用藥物血栓溶解治療 ST 上升型心肌梗塞的情形,CLARITY-TIMI 28 試 驗證實,相對於安慰劑,給予 clopidogrel 負荷劑 量 300 mg,然後每天給予 75 mg,可以降低 30 天的併發症,而且不會增加出血機率²⁹。

Clopidogrel 的負荷劑量和給予的時間點

ALBION 試驗就針對非ST上升型冠心症患者,給予三種不同 clopidogrel 的負荷劑量--300,600,900 mg。發現負荷劑量大於 300 mg 有比較好的抗血小板效用,且不會增加出血機 率³⁰。另一試驗則發現在非ST上升型冠心症患 者,在接受經皮冠血管治療至少12小時之前, 給予 clopidogrel 600mg 負荷劑量,不只有較佳的 抗血小板效果,也可顯著降低1個月內的臨床併 發症³¹。

另外,CLARITY-TIMI 28 試驗也進一步在 藥物血栓溶解治療的急性心肌梗塞病患當中,分 析兩種不同情形下的病患預後。一個是PCI-CLARITY研究,即是針對有進行經皮冠血管治 療的病患,發現這些病患中,若事先已經服用2 到8天的 clopidogrel,可以明顯降低併發症,也 不會增加出血機率³²。另一部份,針對在到院前 就服用 clopidogrel 負荷劑量 300 mg 的病患加以 分析。發現相較於安慰劑,院前服用 clopidogrel 的病患除了一樣可以降低 30 天的併發症,也可 以增加梗塞動脈的暢通率³³。

根據目前建議處理原則, clopidogrel 300 mg 負荷劑量應該在接受經皮冠血管治療前至少6個 小時給藥,才會有明顯的臨床療效。所以,目前 對於接受直接經皮冠血管治療的ST上升型心肌 梗塞病患,雖然有些會接受 clopidogrel 300 mg 或 以上的負荷劑量,但這治療劑量尙需要進一步的 大型臨床試驗加以證明³⁴。

關於 glycoprotein IIb/IIIa inhibitor

因為阿斯匹靈及 clopidogrel 的抗血小板治療 阻抗性的考量,加上 glycoprotein IIb/IIIa inhibitors 藥物作用起始時間較短(靜脈注射方式: tirofiban,5分鐘;eptifibatide,5分鐘;abcixinab,2小時),在於治療時間分秒必爭的急性 冠心症的治療上是有其地位。

Glycoprotein IIb/IIIa inhibitors 的治療,在非 ST上升型急性冠心症方面在2000年發表的治療 指引中,在病患若持續有心肌缺血現象、高危 險族群、或是計劃進行經皮冠心血管治療,已 經明確為class I 建議³⁵。至於開始使用的時間 點,證據似乎尚未一致。在一個小規模的 EVEREST 試驗中,早期侵入性治療非 ST 上升 型急性冠心症,相對於進行經皮冠心血管治療 時才給予高劑量的tirofiban 或標準劑量abciximab,事先給予tirofiban的治療會有較佳的術 後心肌灌流³⁶。然而最近的 ACUITY TIMING 試 驗中,共有9,207位接受早期侵入性治療的非ST 上升型急性冠心症病患,以glycoprotein IIb/IIIa inhibitors 開始治療的時間點,分成兩組:例行 性事前使用和術中選擇性使用。卻發現例行性 事前使用 glycoprotein IIb/IIIa inhibitors 並無明顯 優於選擇性使用,而且選擇性使用方式也降低 出血的機率37。

另外,glycoprotein IIb/IIIa inhibitor和clopidogrel併用,更可增加抗血小板作用。在ISAR-RE-ACT 2試驗中,在非ST上升型冠心症的患者,全 部皆在接受經皮冠血管治療2個小時前接受 600mg clopidogrel負荷劑量,發現若合併使用abciximab能夠降低30天內的併發症,而且併用 clopidogrel和abciximab並不會增加出血併發症³⁸。

而在於ST上升型心肌梗塞患者接受直接經 皮冠心血管治療上,也陸續有研究報告。在AD-MIRAL研究中,使用abciximab在ST上升型心 肌梗塞患者接受直接經皮冠心血管及支架放置的 治療,經過30天到3年的臨床追蹤,皆有較佳 的臨床預後^{39,40}。 關於開始治療的時間點,在TITAN-TIMI 34 試驗中,就發現如果ST上升型心肌梗塞患者, 相對於在心導管室才開始使用 eptifibatide,若在 急診室就事先開始使用,則梗塞相關動脈在直接 經皮冠心血管治療前就可以達較佳的血流和心肌 灌流⁴¹。

至於是否於經皮冠心血管治療中,如何併用 glycoprotein IIb/IIIa inhibitor 和 clopidogrel,雖然 PCI-CLARITY研究的次級分析中(subgroup analy sis),似乎有益處,但仍需進一步獨立的研 究。

目前我國健保使用 tirofiban 的規範,一是不 穩定心絞痛或非Q波之心肌梗塞,另一是急性Q 波心肌梗塞於症狀發生十二小時內,於執行 PT-CA 時得併用。而且使用以不超過連續四十八小 時,劑量 37.5 mg 為原則。

抗血栓凝結劑

相對於傳統肝素的連續性的靜脈注射(負荷 劑量為60IU/kg,最大劑量為4000IU;接著為連 續靜脈注射,劑量為12IU/kg/hr,最高為 1000IU/hr),和繁複的血液凝結檢測(aPTT,維 持在50-70秒)⁴²,目前低分子量肝素,因有較穩 定的藥物作用,不只可以免去上述步驟,並且臨 床上也證實有較佳的預後。最近發表的CLARI-TY-TIMI 28試驗也發現在ST上升型心肌梗塞病 患接受藥物血栓溶解治療時,合併使用低分子量 肝素可顯著降低30天內的併發症⁴³。

另外如何降低因使用抗血栓凝結治療引起的 出血併發症,也是臨床上治療急性冠心症病患的 重點。像是fondaparinux(一種合成的pentasaccharide),或是bivalirudin(一種直接性凝血酵素抑制 劑),在近來發表的臨床試驗上,初步已證實其安 全性,而且可降低出血併發症的機率⁴⁴⁴⁷。

Statin 治療

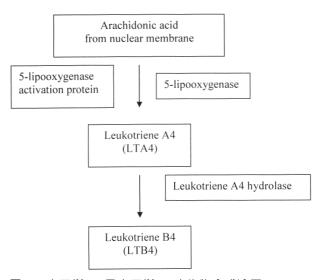
PROVET IT TIMI 22 試驗是使用 statin 治療 急性冠心症病患最重要的指標⁴⁸,研究發現在接 受經皮冠心血管治療之後,急性期14天內開始 接受高劑量的 statin 治療,可以將低密度膽固醇 降至 62 mg/dl,並且顯著地降低2年內的臨床併 發症。在最近發表的統合分析中,其分析了包括 PROVET IT TIMI 22,共13個試驗,發現在急性 冠心症14天內開始使用 statin 治療,的確會顯著 的降低臨床併發症,但這效果要治療4個月後才 會顯現,而且可持續2年⁴⁹。

幹細胞治療

自從在動物實驗上發現在心肌梗塞後骨髓幹 細胞可以分化成心肌細胞進而改善左心室功 能⁵⁰,雖然其中確實的機轉尙未被釐清,但已經 有許多臨床試驗想來確定是否同樣的效應也可使 心肌梗塞的人類病患產生心肌細胞再生,避免產 生左心室再塑,最後達到降低心衰竭及死亡率的 目的。目前利用幹細胞治療急性心肌梗塞的方式 可分成兩種:一是利用直接抽取骨髓幹細胞或利 用顆粒球蛋白生長刺激因子 (granulocyte-colony stimulating factor, G-CSF) 注射後從周邊血液分離 出骨髓的幹細胞,再將幹細胞經由心導管灌注入 產生心肌梗塞相關之冠狀動脈內或經由特殊導管 直接注射入心肌中;另一是直接注射顆粒球蛋白 生長刺激因子治療,而不將幹細胞從血液中分離 出來,相對於前者的好處就是較非侵入性治療而 1.1治療過程較為簡便,但缺點就是無法準確控制 **苘陵鼯幹細胞的數量和其他種類幹細胞可能帶來** 的副作用。

雖然幹細胞治療一直被視爲潛力無窮的治療 模式,但到目前為止,在ST上升型心肌梗塞病 患身上,臨床試驗的結果卻不令人振奮。(表二) 在以分離幹細胞方式治療的臨床試驗上,4到6 個月的追蹤結果似乎不一致。其中只有 REPAIR-AMI 試驗顯示出,幹細胞治療可以降低12個月 內的併發症機率⁵¹。但在目前追蹤時間最長的 BOOST 試驗, 18 個月追蹤報告卻指出幹細胞治 療並無顯著地增加左心室射出分率52。另一方 面,關於直接注射顆粒球蛋白生長刺激因子治療 模式,也有類似的結論。在FIRSTLINE-AMI 試 驗中,直接注射顆粒球蛋白生長刺激因子會增加 4個月後及12個月後的左心室射出分率53。但近 來發表的三個臨床研究 (表三)卻無發現直接注 射顆粒球蛋白生長刺激因子治療的治療組優於對 照組。不過直接注射顆粒球蛋白生長刺激因子的

0	7
7	1


Trial	Setting	Processing and delivery of stem cells	Primary end-point	Results
BOOST ^{52,56}	60 pts with STEMI re- ceiving primary PCI (30 pts treated with BMCs at mean 4.8 days after PCI)	Intracoronary (IC) infusion into IRA with unfractionated 2.5 x 10° BMCs (including 9.5 x 10° CD34+ cells)	LVEF by MRI	6mo: increased LVEF in BMC group 18mo: No difference be- tween two groups
REPAIR- AMI ^{51,57}	199 pts with STEMI receiving primary PCI with BMS (101 pts treated with BMCs at mean 4.3 days after P- CI)	IC infusion into IRA with Ficoll- separated 2.4 x 10^8 BMCs (includ- ing $3.6x10^6$ CD34+/CD45+ & $2.5x10^6$ CD34+/CD133+/CD45+ cells)	LVEF by LV angiography	4 mo: LVEF improved in BMC group 12mo: reduced combined end-point of death, recur- rent MI, or revasculariza- tion in BMC group
ASTAMI ⁵⁸	100 pts with STEMI receiving primary PCI with stenting (47 pts treated with BMC at mean 6 days after PCI)	IC infusion into IRA with Ficoll- separated $7x10^7$ BMC (including $7x10^5$ CD34+ cells)	LVEF by SPECT, echocardiogra- phy, & MRI	6mo:no benefits
Jassens et al. ⁵⁹	67 pts with STEMI re- ceiving primary PCI (33 pts treated with BMCs at 1 day after P- CI)	IC infusion into IRA with Ficoll- separated 3x10 ⁸ BMCs (including 2.8x10 ⁶ CD34+ cells & 2x10 ⁶ CD133+)	LVEF by MRI	4mo: no difference in LVEF; reduced infarct size and improved regional function in BMC group
MAGIC Cell-3-DES ⁵⁵	50 pts in AMI arm re- ceiving DES stenting, mean administration day: 4 days	PBSCs collected at the day after G-CSF 10 μ g/kg for 3 days; IC infu- sion at IRA with 1-2x10 ⁹ mononu- clear cells	LVEF by MRI	6mo:IC infusion of PBSCs improved LVEF

表二:關於急性心肌梗塞病患接受骨髓幹細胞治療之臨床試驗

表三:使用顆粒球蛋白生長刺激因子於急性心肌梗塞病患之臨床試驗

Trial	Setting	Subcutaneous G-CSF use after PCI	Markers for peripheral stem cells	Primary end-point	Results
G-CSF-STEMI ⁶⁰	44 pt. with STE- MI, receiving PP- CI with BMS stenting	10 μ g/kg for 5 days	CD34+/CD133+ Cd34+/CD31+ CD34+/c-kit+	Global and re- gional LV func- tion at 7days and 3 months by MRI	No benefits
STEMMI ⁶¹	78 pt. with STEMI of <12 h receiving primary PCI	10 μ g/kg for 6 days	CD45-/CD34- CD45-/CD34- /CXCR4+ CD45-/CD34- /VEGFR2+	LV wall thickening from baseline to 6 months by MRI	No benefits
REVIVAL-2 ⁶²	114 pt. with STEMI of <12 h receiving primary PCI	10 μ g/kg for 5 days	CD34+	Infarct size by Tc ^{99m} sestamibi from baseline to 4-6 months	No benefits; no improvement in LVEF by MRI

安全性至少在STEMMI⁵⁴和MAGIC Cell-3-DES⁵⁵ 試驗中證實並不會增加支架放置後再狹窄的機 率。 所以,綜合目前的臨床試驗結果,可能要等 幹細胞治療的作用機轉,起始治療的時間點,輔 助藥物的合併使用,及有效治療的細胞種類等被

圖一:白三烯A4及白三烯B4之生物合成途徑

釐清後,才可能有突破性的結論,也不致於浪費 許多人力及物力,更葬送了這樣有發展潛力的治 療模式。

基因體醫學對於急性冠心症預防和 個人化醫療的影響

預防急性冠心症的發生應該是所有治療的終 極目標。也就是找出高危險群病患並加強控制危 險因子的治療,以期降低急性冠心症的發生率。 除了一些傳統已知的危險因子,例如:抽煙、高 血壓、糖尿病、高血脂等,個人遺傳感受性(genetic susceptibility)也越來越受重視。根據目前 的研究,急性冠心症並非由單一基因所造成,即 屬於多基因的非孟氏遺傳方式。目前利用 genome-wide scanning 方式,已經分析冰島 296 個家族,找到兩個可能的基因。一個是位於 12q22,蛋白質產物為leukotriene A4 hydrolase (LTA4)⁶³,另一個在13q12-13,蛋白質產物為 5-lipooxygenase activation protein (FLAP)⁶⁴。這兩 個酵素皆和發炎細胞激素--白三烯(leukotriene) 的合成有關 (圖一)。利用這兩個基因當作標 記,找出191位屬於心肌梗塞高危險的病患,給 予FLAP 拮抗劑治療,證實可以降低白三烯B4 達26% 6%。目前這項藥物將進行下一步臨床試驗 證實是否能夠降低心肌梗塞的機率。 在可預見 的將來,會有愈來越多基因相關的分子標記被發 掘,也使得個人化醫療更趨於可行。

治療指引之落實

雖然美國心臟協院及美國心臟學會針對急性 冠心症的治療指引隨著不斷發表的研究證據持續 的更新,但現實臨床上對於病患的照護是否有落 差,是個近來備受重視的議題。而CRUSDAE研 究,就是針對美國境內超過400家醫院,從2001 年起,分析超過165,000位非ST上升型急性冠 心症病患,實際接受醫療照護的狀況。整體而 言,對於治療指引的遵從比例平均為74%。以 所需開立的藥物而言,低於平均的為:急性期治 療所需的 glycoprotein IIb/IIIa inhibitors;和出院 用藥中的 angiotensin converting enzyme inhibitors 和 clopidogrel⁶⁶。

雖然目前無我國的實際層面執行治療的有關 資料,所謂『他山之石,可以攻錯』,除了追求 新知之餘,也應戮力於實症醫學的實踐,來提高 我國醫療照護品質。

到目前由於急性冠心症的治療的進步,已經 大大降低急性期的死亡率。在追求更完善的治療 策略同時,也應該考慮如何確實地在臨床上執行 所建議的治療處置。此外,在1970年第二版 "The Heart"中, Paul Dudley White 提到預防的 重要性: "the most advance of all ... is the emphasis on the prevention of the very diseases which we have prided ourselves to be so clever to diagnose and to treat."所以,有效預防急性冠心症的發 生,應該才是治療的終極目標。

參考文獻

- Indications for fibrinolytic therapy in suspected acute myocardial infarction: collaborative overview of early mortality and major morbidity results from all randomised trials of more than 1000 patients. Fibrinolytic Therapy Trialists' (FTT) Collaborative Group. Lancet 1994; 343: 311-22.
- 2. Smith SC, Jr., Feldman TE, Hirshfeld JW, Jr., et al. ACC/A-HA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention-Summary Article: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). J Am Coll Cardiol 2006; 47: 216-35.
- 3. Boersma E. Does time matter? A pooled analysis of randomized clinical trials comparing primary percutaneous coronary inter-

vention and in-hospital fibrinolysis in acute myocardial infarction patients. Eur Heart J 2006; 27: 779-88.

- 4. McNamara RL, Herrin J, Bradley EH, et al. Hospital improvement in time to reperfusion in patients with acute myocardial infarction, 1999 to 2002. J Am Coll Cardiol. 2006; 47: 45-51.
- De Luca G, Ernst N, Zijlstra F, et al. Preprocedural TIMI flow and mortality in patients with acute myocardial infarction treated by primary angioplasty. J Am Coll Cardiol 2004; 43: 1363-7.
- 6. Thiele H, Scholz M, Engelmann L, et al. ST-segment recovery and prognosis in patients with ST-elevation myocardial infarction reperfused by prehospital combination fibrinolysis, prehospital initiated facilitated percutaneous coronary intervention, or primary percutaneous coronary intervention. Am J Cardiol 2006; 98: 1132-9.
- Primary versus tenecteplase-facilitated percutaneous coronary intervention in patients with ST-segment elevation acute myocardial infarction (ASSENT-4 PCI): randomised trial. Lancet 2006; 367: 569-78.
- Keeley EC, Boura JA, Grines CL. Comparison of primary and facilitated percutaneous coronary interventions for ST-elevation myocardial infarction: quantitative review of randomised trials. Lancet 2006; 367: 579-88.
- Le May MR, Wells GA, Labinaz M, et al. Combined angioplasty and pharmacological intervention versus thrombolysis alone in acute myocardial infarction (CAPITAL AMI study). J Am Coll Cardiol 2005; 46: 417-24.
- Henriques JP, Zijlstra F, Ottervanger JP, et al. Incidence and clinical significance of distal embolization during primary angioplasty for acute myocardial infarction. Eur Heart J 2002; 23: 1112-7.
- 11. Ali A, Cox D, Dib N, et al. Rheolytic thrombectomy with percutaneous coronary intervention for infarct size reduction in acute myocardial infarction: 30-day results from a multicenter randomized study. J Am Coll Cardiol 2006; 48: 244-52.
- 12. Kaltoft A, Bottcher M, Nielsen SS, et al. Routine thrombectomy in percutaneous coronary intervention for acute ST-segmentelevation myocardial infarction: a randomized, controlled trial. Circulation 2006; 114: 40-7.
- 13.De Luca G, Suryapranata H, Stone GW, et al. Adjunctive mechanical devices to prevent distal embolization in patients undergoing mechanical revascularization for acute myocardial infarction: a meta-analysis of randomized trials. Am Heart J 2007; 153: 343-53.
- 14. Kunadian B, Dunning J, Vijayalakshmi K, et al. Meta-analysis of randomized trials comparing anti-embolic devices with standard PCI for improving myocardial reperfusion in patients with acute myocardial infarction. Catheter Cardiovasc Interv 2007; 69: 488-96.
- 15.Burzotta F, Trani C, Romagnoli E, et al. Manual thrombus-aspiration improves myocardial reperfusion: the randomized evaluation of the effect of mechanical reduction of distal embolization by thrombus-aspiration in primary and rescue angio-

plasty (REMEDIA) trial. J Am Coll Cardiol 2005; 46: 371-6.

- 16.Lefevre T, Garcia E, Reimers B, et al. X-sizer for thrombectomy in acute myocardial infarction improves ST-segment resolution: results of the X-sizer in AMI for negligible embolization and optimal ST resolution (X AMINE ST) trial. J Am Coll Cardiol 2005; 46: 246-52.
- Stone GW, Webb J, Cox DA, et al. Distal microcirculatory protection during percutaneous coronary intervention in acute STsegment elevation myocardial infarction: a randomized controlled trial. JAMA 2005; 293: 1063-72.
- 18. Gick M, Jander N, Bestehorn HP, et al. Randomized evaluation of the effects of filter-based distal protection on myocardial perfusion and infarct size after primary percutaneous catheter intervention in myocardial infarction with and without ST-segment elevation. Circulation 2005; 112: 1462-9.
- 19. Silva-Orrego P, Colombo P, Bigi R, et al. Thrombus aspiration before primary angioplasty improves myocardial reperfusion in acute myocardial infarction: the DEAR-MI (Dethrombosis to Enhance Acute Reperfusion in Myocardial Infarction) study. J Am Coll Cardiol 2006; 48: 1552-9.
- 20.Laarman GJ, Suttorp MJ, Dirksen MT, et al. Paclitaxel-eluting versus uncoated stents in primary percutaneous coronary intervention. N Engl J Med 2006; 355: 1105-13.
- 21.Spaulding C, Henry P, Teiger E, et al. Sirolimus-eluting versus uncoated stents in acute myocardial infarction. N Engl J Med 2006; 355: 1093-104.
- 22. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA 2002 guideline update for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction-summary article: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (Committee on the Management of Patients With Unstable Angina). J Am Coll Cardiol 2002; 40: 1366-74.
- 23.de Winter RJ, Windhausen F, Cornel JH, et al. Early invasive versus selectively invasive management for acute coronary syndromes. N Engl J Med 2005; 353: 1095-104.
- 24.Bavry AA, Kumbhani DJ, Rassi AN, et al. Benefit of early invasive therapy in acute coronary syndromes: a meta-analysis of contemporary randomized clinical trials. J Am Coll Cardiol 2006; 48: 1319-25.
- 25.Hoenig MR, Doust JA, Aroney CN, et al. Early invasive versus conservative strategies for unstable angina & non-ST-elevation myocardial infarction in the stent era. Cochrane Database Syst Rev 2006; 3: CD004815.
- 26.Shantsila E, Watson T, Lip GY. Aspirin resistance: what, why and when? Thromb Res 2007; 119: 551-4.
- 27.Lev EI, Patel RT, Maresh KJ, et al. Aspirin and clopidogrel drug response in patients undergoing percutaneous coronary intervention: the role of dual drug resistance. J Am Coll Cardiol 2006; 47: 27-33.
- 28. Cuisset T, Frere C, Quilici J, et al. High post-treatment platelet reactivity identified low-responders to dual antiplatelet therapy at increased risk of recurrent cardiovascular events after stent-

ing for acute coronary syndrome. J Thromb Haemost 2006; 4: 542-9.

- 29. Sabatine MS, Cannon CP, Gibson CM, et al. Addition of clopidogrel to aspirin and fibrinolytic therapy for myocardial infarction with ST-segment elevation. N Engl J Med 2005; 352: 1179-89.
- 30. Montalescot G, Sideris G, Meuleman C, et al. A randomized comparison of high clopidogrel loading doses in patients with non-ST-segment elevation acute coronary syndromes: the AL-BION (Assessment of the Best Loading Dose of Clopidogrel to Blunt Platelet Activation, Inflammation and Ongoing Necrosis) trial. J Am Coll Cardiol 2006; 48: 931-8.
- 31.Cuisset T, Frere C, Quilici J, et al. Benefit of a 600-mg loading dose of clopidogrel on platelet reactivity and clinical outcomes in patients with non-ST-segment elevation acute coronary syndrome undergoing coronary stenting. J Am Coll Cardiol 2006; 48: 1339-45.
- 32. Sabatine MS, Cannon CP, Gibson CM, et al. Effect of clopidogrel pretreatment before percutaneous coronary intervention in patients with ST-elevation myocardial infarction treated with fibrinolytics: the PCI-CLARITY study. JAMA 2005; 294: 1224-32.
- 33. Verheugt FW, Montalescot G, Sabatine MS, et al. Prehospital fibrinolysis with dual antiplatelet therapy in ST-elevation acute myocardial infarction: a substudy of the randomized double blind CLARITY-TIMI 28 trial. J Thromb Thrombolysis 2007; 23: 173-9.
- 34. Smith SC, Jr., Feldman TE, Hirshfeld JW, Jr., et al. ACC/A-HA/SCAI 2005 Guideline Update for Percutaneous Coronary Intervention--summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/SCAI Writing Committee to Update the 2001 Guidelines for Percutaneous Coronary Intervention). Circulation 2006; 113: 156-75.
- 35. Braunwald E, Antman EM, Beasley JW, et al. ACC/AHA guidelines for the management of patients with unstable angina and non-ST-segment elevation myocardial infarction: executive summary and recommendations. A report of the American College of Cardiology/American Heart Association task force on practice guidelines (committee on the management of patients with unstable angina). Circulation 2000; 102: 1193-209.
- 36.Bolognese L, Falsini G, Liistro F, et al. Randomized comparison of upstream tirofiban versus downstream high bolus dose tirofiban or abciximab on tissue-level perfusion and troponin release in high-risk acute coronary syndromes treated with percutaneous coronary interventions: the EVEREST trial. J Am Coll Cardiol 2006; 47: 522-8.
- 37. Stone GW, Bertrand ME, Moses JW, et al. Routine upstream initiation vs deferred selective use of glycoprotein IIb/IIIa inhibitors in acute coronary syndromes: the ACUITY Timing trial. JAMA 2007; 297: 591-602.
- Kastrati A, Mehilli J, Neumann FJ, et al. Abciximab in patients with acute coronary syndromes undergoing percutaneous coro-

nary intervention after clopidogrel pretreatment: the ISAR-RE-ACT 2 randomized trial. JAMA 2006; 295: 1531-8.

- 39. Montalescot G, Barragan P, Wittenberg O, et al. Platelet glycoprotein IIb/IIIa inhibition with coronary stenting for acute myocardial infarction. N Engl J Med 2001; 344: 1895-903.
- 40. Three-year duration of benefit from abciximab in patients receiving stents for acute myocardial infarction in the randomized double-blind ADMIRAL study. Eur Heart J 2005; 26: 2520-3.
- 41.Gibson CM, Kirtane AJ, Murphy SA, et al. Early initiation of eptifibatide in the emergency department before primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: results of the Time to Integrilin Therapy in Acute Myocardial Infarction (TITAN)-TIMI 34 trial. Am Heart J 2006; 152: 668-75.
- 42. Antman EM, Anbe DT, Armstrong PW, et al. ACC/AHA guidelines for the management of patients with ST-elevation myocardial infarction; A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Revise the 1999 Guidelines for the Management of patients with acute myocardial infarction). J Am Coll Cardiol 2004; 44: E1-E211.
- 43.Sabatine MS, Morrow DA, Montalescot G, et al. Angiographic and clinical outcomes in patients receiving low-molecularweight heparin versus unfractionated heparin in ST-elevation myocardial infarction treated with fibrinolytics in the CLARI-TY-TIMI 28 Trial. Circulation 2005; 112: 3846-54.
- 44. Stone GW, McLaurin BT, Cox DA, et al. Bivalirudin for patients with acute coronary syndromes. N Engl J Med 2006; 355: 2203-16.
- 45. Yusuf S, Mehta SR, Chrolavicius S, et al. Comparison of fondaparinux and enoxaparin in acute coronary syndromes. N Engl J Med 2006; 354: 1464-76.
- 46. Yusuf S, Mehta SR, Chrolavicius S, et al. Effects of fondaparinux on mortality and reinfarction in patients with acute ST-segment elevation myocardial infarction: the OASIS-6 randomized trial. JAMA 2006; 295: 1519-30.
- 47.Lincoff AM, Bittl JA, Harrington RA, et al. Bivalirudin and provisional glycoprotein IIb/IIIa blockade compared with heparin and planned glycoprotein IIb/IIIa blockade during percutaneous coronary intervention: REPLACE-2 randomized trial. JAMA 2003; 289: 853-63.
- 48. Rouleau J. Improved outcome after acute coronary syndromes with an intensive versus standard lipid-lowering regimen: results from the Pravastatin or Atorvastatin Evaluation and Infection Therapy-Thrombolysis in Myocardial Infarction 22 (PROVE IT-TIMI 22) trial. Am J Med 2005; 118 (Suppl 12A): 28-35.
- 49. Hulten E, Jackson JL, Douglas K, et al. The effect of early, intensive statin therapy on acute coronary syndrome: a meta-analysis of randomized controlled trials. Arch Intern Med 2006; 166: 1814-21.
- Orlic D, Kajstura J, Chimenti S, et al. Bone marrow cells regenerate infarcted myocardium. Nature 2001; 410: 701-5.

- 51.Schachinger V, Erbs S, Elsasser A, et al. Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1year results of the REPAIR-AMI trial. Eur Heart J 2006; 27: 2775-83.
- 52. Meyer GP, Wollert KC, Lotz J, et al. Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months' follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006; 113: 1287-94.
- 53. Ince H, Petzsch M, Kleine HD, et al. Prevention of left ventricular remodeling with granulocyte colony-stimulating factor after acute myocardial infarction: final 1-year results of the Front-Integrated Revascularization and Stem Cell Liberation in Evolving Acute Myocardial Infarction by Granulocyte Colony-Stimulating Factor (FIRSTLINE-AMI) Trial. Circulation 2005; 112: I73-80.
- 54. Jorgensen E, Ripa RS, Helqvist S, et al. In-stent neo-intimal hyperplasia after stem cell mobilization by granulocyte-colony stimulating factor Preliminary intracoronary ultrasound results from a double-blind randomized placebo-controlled study of patients treated with percutaneous coronary intervention for STelevation myocardial infarction (STEMMI Trial). Int J Cardiol 2006; 111: 174-7.
- 55. Kang HJ, Lee HY, Na SH, et al. Differential effect of intracoronary infusion of mobilized peripheral blood stem cells by granulocyte colony-stimulating factor on left ventricular function and remodeling in patients with acute myocardial infarction versus old myocardial infarction: the MAGIC Cell-3-DES randomized, controlled trial. Circulation 2006; 114: I145-51.
- 56. Wollert KC, Meyer GP, Lotz J, et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 2004; 364: 141-8.
- 57. Schachinger V, Erbs S, Elsasser A, et al. Intracoronary bone marrow-derived progenitor cells in acute myocardial infarction. N Engl J Med 2006; 355: 1210-21.
- 58.Lunde K, Solheim S, Aakhus S, et al. Intracoronary injection of mononuclear bone marrow cells in acute myocardial infarction. N Engl J Med 2006; 355: 1199-209.

- 59.Janssens S, Dubois C, Bogaert J, et al. Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. Lancet 2006; 367: 113-21.
- 60.Engelmann MG, Theiss HD, Hennig-Theiss C, et al. Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 2006; 48: 1712-21.
- 61. Ripa RS, Jorgensen E, Wang Y, et al. Stem cell mobilization induced by subcutaneous granulocyte-colony stimulating factor to improve cardiac regeneration after acute ST-elevation myocardial infarction: result of the double-blind, randomized, placebocontrolled stem cells in myocardial infarction (STEMMI) trial. Circulation 2006; 113: 1983-92.
- 62.Zohlnhofer D, Ott I, Mehilli J, et al. Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: a randomized controlled trial. JAMA 2006; 295: 1003-10.
- 63.Helgadottir A, Manolescu A, Helgason A, et al. A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat Genet 2006; 38: 68-74.
- 64. Helgadottir A, Manolescu A, Thorleifsson G, et al. The gene encoding 5-lipoxygenase activating protein confers risk of myocardial infarction and stroke. Nat Genet 2004; 36: 233-9.
- 65.Hakonarson H, Thorvaldsson S, Helgadottir A, et al. Effects of a 5-lipoxygenase-activating protein inhibitor on biomarkers associated with risk of myocardial infarction: a randomized trial. JAMA 2005; 293: 2245-56.
- 66.Tricoci P, Peterson ED, Roe MT. Patterns of guideline adherence and care delivery for patients with unstable angina and non-ST-segment elevation myocardial infarction (from the CRU-SADE Quality Improvement Initiative). Am J Cardiol 2006; 98: 30Q-35Q.

Advances in the Therapy of Acute Coronary Syndrome

Hung-Ju Lin, and Ming-Fong Chen

Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan

Acute coronary syndrome consists of two categories: ST-elevation myocardial infarction (STEMI) and non-ST-elevation acute coronary syndrome (NSTE ACS). Recent results of clinical trials relating to STEMI were focused at how to shorten myocardial ischemic time, and how to reduce the distal embolization resulting from primary percutaneous intervention (PCI). As to the former, ASSENT-4 PCI trial did not find facilitated PCI improved the clinical outcomes. As to the later, clinical trials about routine use of thrombectomy or distal protection devices did not have consistent results, and even some of them revealed the association with the routine use of the devices and the outcome of increased infarct area. Besides, whether early invasive strategy is better than selective invasive strategy in patients with NSTE ACS was not confirmed in the 1-year follow-up of ICTUS trial. The longterm result might be essential to the final conclusion. Up to date, clinical evidence on the stem cell-based therapy in STEMI treatment did not show the consistent and robust improvement of left ventricular ejection fraction or other clinical outcomes, no matter with infusion route of bone marrow cells or with subcutaneous injection of granulocyte-colony stimulating factor. More knowledge of mechanism of stem cell-based therapy may be needed to make a significant progress. In addition to exhaustive efforts to put the advances in therapy for acute coronary syndrome into clinical practice, utilizing the advances in genomic medicine might be a critical step to achieve the ultimate treatment goal-modifying environmental and genetic risks to avoid irreversible myocardial damage. (J Intern Med Taiwan 2008; 19: 91- 102)